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Abstract. We show that in contrast to the 1d Frenkel-Kontorova (FK) chain known to obey the Fourier
law of heat conduction and several 2d models which show logarithmic dependence of conductivity on
system size, a scalar 2d FK lattice with commensurate structure exhibits anomalous heat conduction,
whose thermal conductivity displays a power law behavior. The dependence of thermal gradient on bulk
temperature and noise correlation is critically analyzed. A dynamical contribution to conductivity when
the system attains a nonequilibrium steady state of thermal conduction has been identified.

PACS. 44.10.+i Heat conduction – 05.60.-k Transport processes – 05.70.Ln Nonequilibrium and irre-
versible thermodynamics

1 Introduction

Understanding heat conduction in low dimensional sys-
tems [1–19] from a microscopic point of view has been the
subject of renewed current interest. A major focus of these
studies is the recovery of century-old classical Fourier heat
law. It has been shown that the model systems like the
ding-a-dong model [4], a one dimensional chain comprised
of fixed equidistant harmonic oscillators and intervening
free particles arranged between the fixed particles, and its
variant, ding-dong model [5] obey the Fourier law, i.e.,
conductivity remains independent of the system size. It
has been argued that this behavior owes its origin to the
non-integrability of the models. This assertion, however,
is not sufficient for a number of other models, e.g., Fermi-
Pasta-Ulam [6] or Toda chains [7]. The role of various
periodic potentials has been studied quite extensively [20]
in the context of ratchets recently. The studies show that
the periodic potential has significant effect on transport
properties. Based on the study of a number of one di-
mensional chains with on-site potentials [9–11] it has been
demonstrated that lattice-phonon interaction serves as a
main ingredient for the applicability of the Fourier Law of
thermal conductivity. For example, a harmonically cou-
pled chain with on-site cosine potential — the Frenkel-
Kontorova (FK) model exhibits conductivity which is in-
dependent of system size — the hallmark of Fourier law.
An important question is what happens when we go from
1d to 2d systems? Keeping in mind that the lattice-phonon
interaction in addition to the nature of the on-site poten-
tial depends on bulk temperature of the lattice [11], even
for a given small temperature difference at the boundaries
of the lattice, the nature of thermal conductivity and any
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associated anomalous behavior is expected to depend cru-
cially on the bulk temperature of the lattice itself. In the
present article we explore this dependence in a scalar FK
model [21] where each potential minimum of the on-site
potential is occupied by one lattice atom i.e. the commen-
surate case in two dimensions, the first example of this
kind, in the context of anomalous conduction. Specifically
our object is threefold; (i) to what extent the thermal
gradient along the direction of heat flow as well as the
thermal conductivity depends on bulk temperature of the
medium; (ii) to understand the nature of the divergence
of thermal conductivity with the system size for a range of
bulk temperatures; (iii) to identify the specific nature of
nonequilibrium or dynamical contributions to the conduc-
tivity over and above its thermodynamic counterpart, by
exploring the role of dissipation when the system attains
a nonequilibrium steady state of thermal conduction.

In what follows we show that unlike its 1d counter-
part, the 2d FK model does not obey the Fourier law.
Depending on bulk temperature the conductivity displays
power law behavior with system size in contrast to loga-
rithmic divergence as observed in several other 2d mod-
els [16,17]. The identification of the dynamical contribu-
tion to conductivity enables us to distinguish between the
energy diffusion and spatial diffusion limited regimes in
the mechanism of thermal conduction.

2 2d Frenkel-Kontorova lattice

We consider a 2d lattice made of Nx × Ny equal mass
(assumed to be unity) particles coupled harmonically with
nearest neighbor interaction of unit force constant. The
lattice particles are also subjected to an on-site potential
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U(qij). The Hamiltonian of the 2d lattice is given by

H =
Nx,Ny∑

i=1,j=1

p2
ij

2
+

Nx,Ny∑

i=1,j=1

[
1
2
{(qij−qi−1j)2+(qij − qi+1j)2

+(qij − qij−1)2 + (qij − qij+1)2} + U(qij)
]

(1)

where qij and pij are the displacement from the equilib-
rium position and momentum of (ij) particle, respectively.
The on-site potential exerts a pinning force on the parti-
cles due to which the lattice becomes stabilized. For the
present study we have considered U(qij) = cos(qij) as
the on-site potential. The 2d harmonic lattice in the pres-
ence of this potential is the 2d version of the FK lattice.
For the purpose of heat conduction two Langevin heat
baths having different temperatures are connected to the
left and the right sides of the lattice. In the reduced de-
scription the particles of the lattice connected to the heat
baths contain, in addition to the usual force terms due to
nearest-neighbor interaction potential and on-site poten-
tial, a dissipation and a random force due to heat baths.
The properties of the heat baths are characterized defining
the characteristics of the fluctuation/noise sources due to
heat baths. We consider here two different types of noise
correlations.

Case I: White noise
The Langevin force of the left and right baths, ηL

and ηR are characterized by the well-known fluctuation-
dissipation relation. In case of white noise the noise
terms are instantaneously correlated to each other and
are given by

〈ηL
j 〉 = 0 = 〈ηR

j 〉 (2)

〈ηL
i (t)ηL

j (t′)〉 = 2ΓkBTLδ(t − t′)δij (3)

〈ηR
i (t)ηR

j (t′)〉 = 2ΓkBTRδ(t − t′)δij (4)

where TL and TR are the temperatures correspond-
ing to left and right heat baths. Γ and kB are the
usual Markovian dissipation and Boltzmann constant,
respectively.

Case II: Colored noise
We consider Gaussian distribution of exponentially corre-
lated noise due to the bath, in which case the fluctuation-
dissipation relations are given by

〈ηL
i (t)ηL

j (t′)〉 =
ΓkBTL

τc
e−|t−t′|/τcδij (5)

〈ηR
i (t)ηR

j (t′)〉 =
ΓkBTR

τc
e−|t−t′|/τcδij (6)

τc is the correlation time of the noise. For numerical so-
lution of the Langevin equations arising due to coupling
of the particle with heat bath we have employed the
standard procedure [19,26]. We have used fixed bound-
ary condition q0j = 0 = qNx+1j and qi0 = 0 = qiNy+1.
Depending on the situation we have used the time step
of integration as ∆t = 0.001–0.01 and the time for inte-
gration t = 5 × 105–2 × 106. We take care of the required
inequality ∆t � τc. In addition long time integration

is necessary for appropriate equilibration of the system.
The local temperature of the lattice, the equilibrium time
average of the kinetic energy of the (ij) particle, is de-
fined as Tij = 〈p2

ij〉. Since there is no heat bath at the
upper and lower sides of the lattice there is no thermal
gradient along the y direction and the temperature of
the ith layer is given by averaging along this direction
as Ti = 1

Ny

∑Ny

j=1 Tij . The local heat flux along x direc-
tion from the particle (ij) to (i + 1j) is defined as Jij =
1
2 〈(qi+1j−qij)(q̇ij−q̇i+1j)〉. Heat flux in the ith layer is fur-

ther given by Ji = 1
2Ny

〈∑Ny

j=1(qi+1j − qij)(q̇ij − q̇i+1j)
〉
.

At equilibrium the local heat flux must be independent of
site (i). The global thermal conductivity of the lattice is
then given as

κ =
Nx∑

i=1

Ji

(TL − TR)
. (7)

3 Results and discussions

Having defined several quantifiers associated with heat
conduction we first represent the local temperature profile
at different bulk temperatures [T = 1

2 (TL + TR)] keeping
the temperature difference between the baths ∆T = 1.
Figures 1a–1c represent the local temperature profile at
several values of bulk temperatures T = 0.6, T = 3.0 and
T = 9.5 for a fixed system size Nx = 40, Ny = 40. It is
evident that at low bulk temperatures, e.g. at T = 0.6
(Fig. 1a) no thermal gradient occurs along the bulk. At
higher bulk temperature the profile shows a finite thermal
gradient. In the 2d FK lattice heat is transmitted due to
the interaction of phonons with the lattice (on-site poten-
tial). At low bulk temperature the lattice-phonon inter-
action is very weak and the lattice effectively behaves as
a harmonic lattice resulting in no thermal gradient along
the bulk [3]. With increase of bulk temperature as shown
in Figures 1b, 1c phonon-lattice interactions become more
prominent which cause thermal gradient along the bulk of
the lattice. The results shown in Figures 1a–1c have been
simulated in the Markovian limit with Γ = 1.0. We have
checked that the presence of noise correlation does not
change the above findings. Figures 1a–1c indicates that
the temperature distribution along the chain is discon-
tinuous at the boundary of the lattice. This discontinu-
ity results from the strong boundary resistance, known as
Kapitza resistance, across the interface. The temperature
discontinuity appears at the boundary of two dissimilar
substances. The mismatch of phonon modes, due to the
dissimilarity of the substances, results in boundary resis-
tance [22]. We have checked that the appearance of bound-
ary jump is not due to the fixed boundary condition used
in the simulation. Using both fixed boundary conditions
in x and y directions, and open boundary conditions in
x and periodic boundary conditions in y we find similar
boundary jump of temperature (see Fig. 2).

It is interesting to note that a 1d FK lattice
obeys [9,11] the Fourier law of heat conduction depending
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Fig. 1. Local temperature profile for 2d FK lattice at three
different bulk temperatures (a) T = 0.6, (b) T = 3.0, and (c)
T = 9.5 with ∆T = 1.0, Γ = 1.0 and Nx = Ny = 40 in the
Markovian limit (units arbitrary).
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Fig. 2. Comparison of Ti vs. i/Nx profiles using two different
boundary conditions, circles represent open boundary condi-
tions in the x direction and periodic boundary conditions in
the y direction, and boxes represent fixed boundary conditions
in both directions using Nx = Ny = 140 and Γ = 1.0.

on the values of different parameters such as bulk temper-
ature, coverage parameter, winding number etc. Whether
2d FK model exhibits similar behavior requires a closer
look into the dependence of thermal conductance with
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Fig. 3. Dependence of κ on system size (Nx) for 2d FK lattice
at different T with ∆T = 1.0 and Γ = 1 in the Markovian
limit (solid line-fitted curve) (units arbitrary).

the system size and also the role of temperature on the
system size dependence of thermal conductivity. To this
end in Figure 3 we have plotted thermal conductivity, κ,
of the lattice at different bulk temperatures, T , keeping
∆T = 1.0 and for Γ = 1.0 in the Markovian limit. At very
low bulk temperature T = 0.6 (TL = 1.1, TR = 0.1) κ di-
verges linearly with the system size. With increase of tem-
perature T = 1.5 (TL = 2.0, TR = 1.0) the κ vs. Nx profile
diverges slightly from linearity. In the intermediate to very
high temperature regime (T = 3.0, T = 5.5, T = 6.0, T =
9.5, T = 19.5) κ, in general, obeys power law divergence
κ ∝ Nα

x with 0.3 < α < 0.5. At very low temperature as
mentioned earlier the system behaves as a 2d harmonic
lattice with no thermal gradient along the bulk of the
lattice displaying linear divergence of κ. With increase of
bulk temperature of the lattice the lattice-phonon interac-
tions responsible for energy transfer set in in the system.
This power law dependence of κ is in contrast to what
has been observed in a wide class of 2d systems, e.g., har-
monic lattice with disorder [18,19], Fermi-Pasta-Ulam β
model [16,17] etc. In order to check the dependence of
divergence of thermal conductivity with system size on
boundary conditions we have carried out the simulation
with open boundary condition in x and periodic bound-
ary condition in y. Figure 4 shows the comparative pro-
files of κ vs. Nx for fixed boundary condition in both di-
rections and open boundary condition in x and periodic
boundary condition in y for the parameter set TL = 3.5,
TR = 2.5, Γ = 1.0. It is clear from the figure that the
overall qualitative nature of the curves does not change
with the boundary conditions. The thermal conductivity
still shows power law divergence with system size. Why
the 2d scalar FK model shows power law divergence of
thermal conductivity still remains an open problem. The
preliminary findings of Li et al. [23] suggest that systems
exhibiting normal diffusion follow the Fourier law of heat
conduction whereas systems exhibiting anomalous diffu-
sion do not obey the Fourier law. In view of their re-
sults there may be anomalous diffusion operating in the
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Fig. 4. κ vs. Nx for with two different types of boundary
conditions, upper line using fixed boundary conditions in both
directions and lower line using open boundary conditions in the
x direction and periodic boundary conditions in the y direction
with the parameter set TL = 3.5, TR = 2.5 and Γ = 1.0.
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Fig. 5. Dependence of κ with correlation time (non-Markovian
bath) τc.

2d scalar FK model resulting in the anomalous behavior
of heat conductivity and power law dependence of thermal
conductivity.

The effect of spectral properties of the heat bath has
been considered earlier in the heat conduction problem for
1d FPU-β [24], disordered harmonic chain [25] etc. In the
context of heat conduction in a 2d lattice we now study
the effect of memory of heat bath. Figure 5 describes the
effect of correlation time of noise (τc) of the heat bath
on thermal conductivity for a lattice with size Nx = 40,
Ny = 40, TL = 2.0, TR = 1.0 and Γ = 1.0. In the limit of
small τc thermal conductivity is nearly independent of τc

suggesting the Markovian nature of the heat bath. With
the increase of τc, conductivity first increases followed by
a sharp decrease which tends towards a stationary value
of thermal conductivity. In the very short memory time
regime the bath essentially behaves as a Markovian bath
so that in this regime thermal conductivity is insensitive to
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Fig. 6. Plot of thermal conductivity κ vs. system size Nx for
two different heat baths, Markovian (circle) and no-Markovian
baths (τc = 1.0 ) (square).

response time of the heat bath. At the very high τc limit
the large correlation of the thermal fluctuations puts a
delay in the equilibration of system and thereby restricts
the system to transport energy from one lattice site to an-
other. To study the effect of correlation time of the bath
on divergence profile of the thermal conductivity with sys-
tem size we plot in Figure 6 κ vs. Nx for Markovian and
non-Markovian heat baths. It is clear for the plot that
there is no qualitative change in nature of divergence of κ
with the system size suggesting that the non-Markovian
effect does not play any significant role in the mechanism
of energy transport along the lattice.

The effect of bulk temperature of the lattice on ther-
mal conductivity is shown in Figure 7. The behavior of
thermal conductivity with bulk temperature is a reflec-
tion of the lattice-phonon interaction at different temper-
atures. In the low temperature regime the nonlinearity
due to the on-site cosine potential is insignificant. With
increasing temperature the mean free paths of phonons
are considerably reduced which leads to decrease in heat
transport. At higher temperatures the lattice-phonon in-
teractions set in and increase of temperature results in
an increase of more active phonon modes leading to in-
crease of heat transport. It is evident that above the
crossover temperature (around T ∼ 5.0 in Fig. 7) ther-
mal conductivity follows the traditional Arrhenius behav-
ior. This enables one to identify the thermal activation of
each phase (qi+1j−qij) or (qij+1−qij) over a barrier with a
probability given by the Boltzmann factor exp(−E/kBT )
where E (E � kBT ) is the energy of activation, typi-
cally the height of potential energy barrier. The Arrhe-
nius behavior of κ is the reflection of equilibrium thermal
Boltzmann distribution function exp(−E/kBT ). But in
the low temperature regime the equilibrium Boltzmann
distribution is not a valid distribution function [26] for
description of thermalization, so at low temperature κ
does not show Arrhenius behavior. The low tempera-
ture behavior of the thermal conductivity can be ac-
counted if the Boltzmann distribution exp(−E/kBT ) is
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Fig. 7. Dependence of κ with T for the system size Nx =
Ny = 40 keeping ∆T = 1.0 with Γ = 1.0 in the Markovian
limit (units arbitrary).

replaced by the Wigner canonical thermal distribution [27]
exp(−E/�ω0(n̄(ω0) + 1/2)) where ω0 is the characteristic
frequency of the system and n̄(ω0) refers to Bose-Einstein
distribution of the form n̄(ω0) = [exp(�ω0/kBT ) − 1]−1,
� is the Planck’s constant. �ω0[n̄(ω0) + 1/2] refers to the
characteristic dispersion of energy, which goes over to kBT
in the classical limit kBT � �ω0, so that Wigner distribu-
tion reduces to Boltzmann distribution. On the other hand
in the vacuum limit (n̄ = 0) this assumes the form of zero
point energy �ω0/2. Thus an interesting feature of this
canonical thermal distribution is that it remains a valid
pure state nonsingular distribution function even at abso-
lute zero. The special advantage of this distribution has
been exploited recently in developing a quantum Langevin
equation [26] where the harmonic oscillator thermal bath
is described by this canonical distribution function.

While the Boltzmann factor pertains to an equilibrium
situation, it is also interesting to extract out the dynamical
contribution over and above the thermodynamic contribu-
tion to thermal conductivity under nonequilibrium steady
state conditions. To this end we have plotted the variation
of κ with dissipation constant Γ in Figure 8. The conduc-
tivity first increases linearly with Γ in the low dissipation
regime followed by a decrease as Γ−1 in the high dissipa-
tion regime after passing through a maximum and thus
exhibiting a bell-shaped curve. It is easy to understand
that this variation remains outside the purview of the the-
ory of activation which is essentially thermodynamic in its
content. A clue in understanding this variation lies in the
resemblance of this turnover of κ as a Kramers turnover
of rate constant. If we take care of nonequilibrium contri-
butions [28] to κ as κ = κthermodynamic × fnonequilibrium .
In view of the strong similarity between thermal conduc-
tivity and the Kramers’ rate constant associated with
the activated barrier crossing, we mean by ‘thermody-
namic contribution’ the contribution due to the Arrhe-
nius factor of the rate constant while ‘dynamical contri-
bution’ corresponds to the factor which appears due to
the nonequilibrium steady state dynamics of the system
which can be identified as the pre-exponential factor of
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Fig. 8. Kramers’ turnover for thermal conductivity: the vari-
ation of κ with Γ for Markovian bath (circle) and non-
Markovian bath (τc = 1.0 ) (square) with TL = 2, TR = 1
and Nx = Ny = 40. Solid lines are the fitted curves with inter-
polation formula as given in the text.

the rate constant. When fnonequilibrium = ω−1
b (−Γ/2 +√

(Γ/2)2 + ω2
b ) in the intermediate to strong dissipation

regime and fnonequilibrium = ΓA in the low dissipation
regime where ωb and A are appropriately chosen constants
it is possible to account for the turnover by a fitted curve
as shown by the solid line in Figure 8, at two different
baths (Markovian and non-Markovian) with the help of an
interpolation formula [28] of the form κ−1 = κ−1

IH + κ−1
W .

Here the IH and W refer to intermediate to high and
weak damping, respectively. Figure 8 in contrast to Fig-
ure 7 therefore extracts out the nonequilibrium steady
state contribution over and above the thermodynamic con-
tribution to thermal conductivity and we may infer that
both spatial diffusion as well as energy diffusion are in-
tegral parts of the mechanism of heat conduction in high
and low dissipation regimes. In Kramers’ theory it is pos-
sible to calculate explicitly the constants A and ω. In the
context of heat conduction we believe that it is possible
to calculate these constants starting from a microscopic
approach of the problem. The calculation of explicit an-
alytic expression of thermal conductivity still remains to
be addressed. Keeping in mind the resemblance with the
Kramers’s rate constant the model parameters should be
dependent on T and τc.

4 Conclusion

To summarize we have considered anomalous heat conduc-
tion in a scalar 2d FK model with commensurate struc-
ture. It has been shown that the occurrence of a thermal
gradient depends crucially on the bulk temperature. In
turn, the nature of the thermal gradient determines the
behavior of thermal conductivity as a function of system
size. While in the harmonic limit achievable at very low
temperature of the bulk the conductivity diverges linearly,
one observes power law divergence at some intermediate
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range of temperatures. This is markedly different from
what has been found earlier in a class of 2d lattices (e.g.
Fermi-Pasta-Ulam β lattice [16] etc.) exhibiting logarith-
mic dependence of κ on the system size. This puts a ques-
tion mark on the conjecture that logarithmic divergence
in 2d systems is fairly universal. We have also explored the
effect of response time of Langevin heat baths on the ther-
mal conductivity and also on the divergence profile of the
thermal conductivity with lattice size. The study shows
that the effect of heat bath response time is very weak on
the divergence profile. The study of the dependence of κ
on dissipation enables us to identify the regimes of spatial
diffusion or energy diffusion as a part of nonequilibrium
dynamical contribution to thermal conductivity beyond
its thermodynamic content.

The author would like to thank Prof. Deb Shankar Ray for his
critical comments and discussions.
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